# Demand Elasticity along a Linear Demand Curve (Point Method)

Drag the endpoints of the demand curve to change its slope.

Drag the price up and down to see how the quantity demanded changes,
and to see how the elasticity calculations change as you move along the demand curve.

\color{ {{ color('green') }} }{\frac{dQ^D}{dP} = -\frac{ {{ params.demandQuantityIntercept | number:0 }} }{ {{ params.demandPriceIntercept | number:0}} } = {{ model.priceQuantityRelationshipFunction.inverseSlope | number:2 }}}

\epsilon_{Q^D,P} = \frac{P}{ \color{ {{ color('demand') }} }{Q^D(P)} } \times \color{ {{ color('green') }} }{ \frac{dQ^D}{dP} } || = \frac{ {{ params.price | number:0 }} }{ \color { {{ color('demand') }} } { {{ model.quantityAtPrice(params.price) | number:1 }} } } \times \color{ {{ color('green') }} }{ {{ model.inverseSlope | number:2 }} } || = {{ model.priceElasticity(params.price).elasticityNumber() }}

\left| \epsilon_{Q^D,P} \right| = {{ model.priceElasticity(params.price).elasticityComparator}} \Rightarrow \text{ {{ model.priceElasticity(params.price).elasticityWord }}}

Copyright (c) Christopher Makler / econgraphs.org