EconGraphs Logo BETA
Note: This work is under development and has not yet been professionally edited.
If you catch a typo or error, or just have a suggestion, please submit a note here. Thanks!
Chapter 6 / Friday, October 4 | Slopes of Level Sets: Mathematical and Economic Interpretations

6.5 Conclusion


On the one hand, what we did in this lecture was pretty simple: we took one formula \(\left.{dy \over dx}\right|_{f(x,y) = z} = - {\partial f/\partial x \over \partial f/\partial y}\) and applied it to two examples: the formula for the slope of an isoquant is \(MRTS = {\partial f(L,K)/\partial L \over \partial f(L,K)/\partial K} = {MP_L \over MP_K}\) and the formula for the slope of the PPF is \(MRT = {\partial L(x_1,x_2)/\partial x_1 \over \partial L(x_1,x_2)/\partial x_2 } = {1/MP_{L1} \over 1/MP_{L2} }\) In each of these cases, we used some economic logic to analyze what exactly was going on as one moved along each of these curves:

This is challenging stuff, and the homework is hard. Be sure you balance your ability to do the (necessary!) procedural aspects of the homework with some building of intuition as to what those procedures are actually doing.

Previous: Application II: Deriving the Slope of a PPF (MRT)
[ End of chapter ]
Copyright (c) Christopher Makler / econgraphs.org